

Product datasheet

anti-Glial Fibrillary Acidic Protein rabbit polyclonal, serum

Short overview

 Cat. No.
 10555

 Quantity
 250 μl

Product description

Host Rabbit
Antibody Type Polyclonal

ImmunogenIsolated from human spinal cordFormulationContains 0.09% sodium azide

UniprotIDQ28115 (Bovine),P14136 (Human),P47819 (Rat)SynomymGlial fibrillary acidic protein, GFAP, GFAP

Note Centrifuge prior to opening

ConjugateUnconjugatedPurificationStabilized antiserum

Short term at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles

Intended use Research use only

Application IHC, WB

Reactivity Bovine, Human, Rat

Applications

Immunohistochemistry (IHC) - frozen 1:50

Immunohistochemistry (IHC) - paraffin 1:50 (microwave treatment recommended)

Western Blot (WB) Assay dependent

Background

The antibody is directed against the 56 kDa GFAP protein (Glial Fibrillary Acidic Protein, Glial Filament Protein), the main subunit of intermediate filaments of glial cells and astrocytes. The antibody can be used to discriminate glial tumors (astrocytomas, ependy-monas) from other tumors, as meningiomas, neuro-blastomas, chordomas, chondrosarcomas, lym-phomas and carcinomas.

Positive control: Brain tissue.

Product images

anti-Glial Fibrillary Acidic Protein rabbit polyclonal, serum
Pan-NF + GFAP

Pinkernelle, J., Fansa, H., et al. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One. 2013-08-24. Species/Reactant: Rattus norvegicus (Rat)Applications: Immunohistochemistry-immunofluorescenceImage collected and cropped by CiteAb from the following publication, provided under a CC-BY licence.

Pinkernelle, J., Fansa, H., et al. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One. 2013-08-24. Species/Reactant: Rattus norvegicus (Rat)Applications: Immunohistochemistry-immunofluorescenceImage collected and cropped by CiteAb from the following publication, provided under a CC-BY licence.

<u>Pinkernelle, J., Fansa, H., et al. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One. 2013-08-24.</u> Species/Reactant: Rattus norvegicus (Rat)Applications: Immunohistochemistry-immunofluorescenceImage collected and cropped by CiteAb from the following publication, provided under a CC-BY licence.

References

Publication	Species	Application
Pinkernelle, J., Fansa, H., Ebmeyer, U. & Keilhoff, G.	rat	IHC-IF
Prolonged Minocycline Treatment Impairs Motor Neuronal		
Survival and Glial Function in Organotypic Rat Spinal Cord		
Cultures. PLoS One 8, e73422 (2013).		