

Product datasheet

anti-Vimentin guinea pig polyclonal, serum

Short overview

 Cat. No.
 GP53

 Quantity
 100 μl

Product description

Host Guinea pig
Antibody Type Polyclonal

Immunogen Vimentin purified from calf lens

Formulation Contains 0.09% sodium azide and 0.5% BSA

UniprotID P48616 (Bovine), P08670 (Human), P20152 (Mouse)

Synomym Vimentin, VIM

Note Centrifuge prior to opening

ConjugateUnconjugatedPurificationStabilized antiserum

Storage Short term at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles

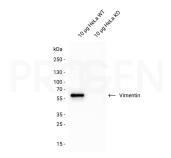
Intended useResearch use onlyApplicationICC/IF, IHC, WBReactivityBovine, Human, Mouse

Applications

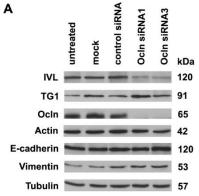
Immunocytochemistry (ICC) Assay dependent

Immunohistochemistry (IHC) - frozen 1:100

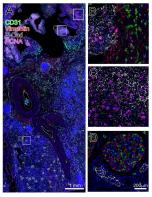
Immunohistochemistry (IHC) - paraffin 1:50 (microwave treatment recommended)

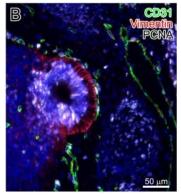

Western Blot (WB) 1:500-1:3,000

Background


Specific detection of vimentin (Mr 57,000 polypep-tide).

Tumors specifically detected: Sarcoma (in-cluding myosarcoma), lymphoma, melanoma.


Product images


Western blot analysis of HeLa lysate with anti-Vimentin antibody. Western blot analysis was performed on 10 μ g wild type (WT) and 10 μ g Vimentin knockout (KO) HeLa lysate. The PVDF membrane was blocked with 5% milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-Vimentin guinea pig polyclonal (Cat. No. GP53) was diluted in blocking buffer (1:1,000) and incubated for 1 h at RT. The secondary antibody goat anti-guinea pig HRP was also diluted in blocking buffer (antibody concentration 0.2 μ g/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

Rachow, S., Zorn-Kruppa, M., et al. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis. PLoS One. 2013-02-08. Species/Reactant: Homo sapiens (Human)Applications: Western BlottingImage collected and cropped by CiteAb from the following publication, provided under a CC-BY licence.

Yarilin, D., Xu, K., et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015-03-31. Species/Reactant: Homo sapiens (Human)Applications: Immunohistochemistry-immunofluorescenceImage collected and cropped by CiteAb from the following publication, provided under a CC-BY licence.

Yarilin, D., Xu, K., et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci

Rep. 2015-03-31. Species/Reactant: Mus musculus (House mouse)Applications: Immunohistochemistry-immunofluorescenceImage collected and

PROGEN Biotechnik GmbH | Maaßstraße 30 | D-69123 Heidelberg

cropped by CiteAb from the following publication, provided under a CC-BY licence.			
	BROOFN Bistockeils Carblel MacRetacks 20 LB CO402 L		

References

Publication	Species	Application
Ibrahim, D. et al. An in vitro study of scarring formation mediated by human Tenon fibroblasts: Effect of Y-27632, a Rho kinase inhibitor. Cell.Biochem.Funct. 37, 113-124 (2019)	human	ICC-IF
Keskin, I. et al. The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta.Neuropathol. , (2019)	human	ICC-IF
Nehrenheim, L. et al. Native aortic valve derived extracellular matrix hydrogel for three dimensional culture analyses with improved biomimetic properties. Biomed. Mater. 14, 35014 (2019).	sheep	ICC-IF
Shawki, H. et al. MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS.One. 13, e0190800 (2018).	mouse	IHC-IF (paraffin),ICC
Hakuno, D. et al. Hepatokine ?1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci.Rep. 8, 16749 (2018).	mouse	IHC-IF (paraffin)