

Product datasheet

anti-Synaptophysin mouse monoclonal, SY38, liquid, purified, sample

Short overview

 Cat. No.
 690012S

 Quantity
 200 µl

Concentration 50 μg/ml (10 μg)

Product description

HostMouseAntibody TypeMonoclonalIsotypeIgG1CloneSY38

Immunogen Synaptophysin from presynaptic vesicles, prepared from bovine brain

Formulation PBS pH 7.4 with 0.09% sodium azide and 0.5% BSA

UniprotID P20488 (Bovine), P08247 (Human), F6VR28 (Mouse), P07825 (Rat)

Synomym Synaptophysin, Major synaptic vesicle protein p38, SYP

Note Centrifuge prior to opening

Conjugate Unconjugated

Purification Affinity chromatography

Storage Short term at 2-8°C; long term storage in aliguots at -20°C; avoid freeze/thaw cycles

Intended useResearch use onlyApplicationICC/IF, IHC, WB

Reactivity Bovine, Human, Mouse, Rat

Applications

Immunocytochemistry (ICC) Assay dependent

Immunohistochemistry (IHC) - frozen 1:50-1:200 (0.25-1 μg/ml)

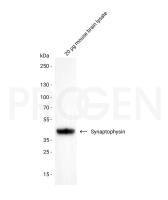
Immunohistochemistry (IHC) - paraffin 1:50-1:200 (0.25-1 μg/ml, microwave treatment recommended, no

protease treatment)

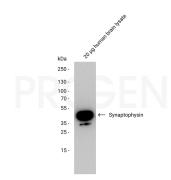
Western Blot (WB) 1:500-1:1,000 (0.05-0.1 μg/ml)

Background

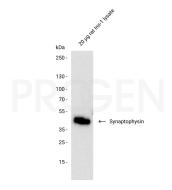
SY38 represents an excellent marker for several neuroendocrine, neuronal and adrenal tumors. Neuronal and adrenal tumors such as pheochromocytomas, paragangliomas, neuroblastomas, ganglioneuroblastomas. Neuroendocrine tumors of epithelial origin: Pancreatic islet cell carcinoma, bronchial and gastrointestinal carcinoids, medullary carcinoma of thyroid. Polypeptide reacting: 38 kDa transmembrane glycoprotein of presynaptic vesicles.


SY38 binds to a cytoplasmatic domain of synaptophysin. The epitope was located to a flexible segment in the center of the repeat structure PROGEN Biotechnik GmbH | Maaßstraße 30 | D-69123 Heidelberg

(Knaus and Betz, 1990).


Tested cultured cell lines: rat PC-12 cell line.

Knaus, P. & Betz, H. Mapping of a dominant immunogenic region of synaptophysin, a major membrane protein of synaptic vesicles. FEBS Lett. 261, 358360 (1990).


Product images

Western blot analysis of mouse brain lysate with anti-Synaptophysin antibody. Western blot analysis was performed on 20 µg mouse brain lysate. The PVDF membrane was blocked with 5% dry milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-Synaptophysin mouse monoclonal, SY38 (Cat. No. 690012) was diluted in blocking buffer (antibody concentration 0.05 µg/ml) and incubated for 1 h at RT. The secondary antibody anti-mouse, HRP conjugate was also diluted in blocking buffer (antibody concentration 0.2 µg/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

Western blot analysis of human brain lysate with anti-Synaptophysin antibody. Western blot analysis was performed on 20 μ g human brain lysate. The PVDF membrane was blocked with 5% dry milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-Synaptophysin mouse monoclonal, SY38 (Cat. No. 690012) was diluted in blocking buffer (antibody concentration 0.05 μ g/ml) and incubated for 1 h at RT. The secondary antibody anti-mouse, HRP conjugate was also diluted in blocking buffer (antibody concentration 0.2 μ g/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

Western blot analysis of rat Ins-1 lysate with anti-Synaptophysin antibody. Western blot analysis was performed on 20 µg rat Ins-1 lysate. The PVDF membrane was blocked with 5% dry milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-Synaptophysin mouse monoclonal, SY38 (Cat. No. 690012) was diluted in blocking buffer (antibody concentration 0.1 µg/ml) and incubated for 1 h at RT. The secondary antibody anti-mouse, HRP conjugate was also diluted in blocking buffer (antibody concentration 0.2 µg/ml) and incubated for 1 h at RT. The PROGEN Biotechnik GmbH | Maaßstraße 30 | D-69123 Heidelberg

bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.			
PDO	OCENI Distanta sharile Cashill I Man Catas	0 - 20 D CO402 Laidalla area	

References

Publication	Species	Application
Wiedenmann, B., Franke, W. W., Kuhn, C., Moll, R. & Gould,	human	IHC (frozen)
V. E. Synaptophysin: a marker protein for neuroendocrine		
cells and neoplasms. Proc. Natl. Acad. Sci. U. S. A. 83,		
<u>3500-4 (1986).</u>		
Dockhorn-Dworniczak, b. et al. patterns of expression of	human	IHC (frozen)
cytoskeletal proteins in human thyroid gland and thyroid		,
carcinomas. differentiation. 35, 53-71 (1987).		
Portela-Gomes, G. M., Stridsberg, M., Johansson, H. &	human	IHC (paraffin)
Grimelius, L. Co-localization of synaptophysin with different		
neuroendocrine hormones in the human gastrointestinal tract.		
Histochem. Cell Biol. 111, 49-54 (1999).		
Nakajima, C. et al. Low Density Lipoprotein Receptor-related	mouse	WB,ICC-IF
Protein 1 (LRP1) Modulates N-Methyl-D-aspartate (NMDA)		,
Receptor-dependent Intracellular Signaling and		
NMDA-induced Regulation of Postsynaptic Protein		
Complexes. J. Biol. Chem. 288, 21909-21923		
Could V. F. et al. Supertophysis Function in	human	ILIC (frazon)
Gould, V. E. et al. Synaptophysin Expression in	human	IHC (frozen)
Neuroendocrine Neoplasms as Determined by		
Immunocytochemistry. Am. J. Pathol126, 243-257 (1987).		
	1	