

Product datasheet

anti-Glial Fibrillary Acidic Protein (GFAP) guinea pig polyclonal, serum

Short overview

Cat. No.	GP52
Quantity	100 µl

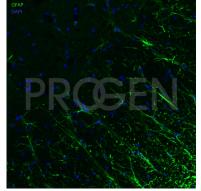
Product description

Host	Guinea pig	
Antibody Type	Polyclonal	
Immunogen	Gliafilament protein purified from bovine spinal cord	
Formulation	Contains 0.09% sodium azide and 0.5% BSA	
UniprotID	P47819 (Rat), P03995 (Mouse)	
Synomym	Glial fibrillary acidic protein, GFAP, GFAP	
Note	Centrifuge prior to opening	
Conjugate	Unconjugated	
Purification	Stabilized antiserum	
Storage	Short term at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles	
Intended use	Research use only	
Application	IHC	
Reactivity	Human, Mouse, Rat	

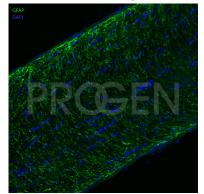
Applications

Immunohistochemistry (IHC) - frozen	1:100-1:1000	
Immunohistochemistry (IHC) - paraffin	1:4000-1:16000 (microwave treatment, DAB staining)	

Background


Specific detection of GFAP (Glial Fibrillary Acidic Protein, Glial Filament Protein) (Mr 52000 polypeptide).

Tumors specifically detected: Astrocytomas, gangliomas, meulloblastomas, certain teratomas


Product images

IHC analysis of mouse brain using anti-glial fibrillary acidic protein antibody (Cat. No. GP52). IHC was performed on formalin fixed paraffin embedded sections. The samples were deparaffinized with xylol and ethanol followed by heat induced antigen retrieval with 10 mM citrate buffer. After preparation the tissue was blocked with normal serum for 20 min at RT. The primary antibody anti-GFAP (Cat. No. GP52) was diluted in PBS (1:2000) and incubated at 4°C over-night. The secondary antibody biotin anti-guinea pig was incubated for 30 min at RT. Sections were incubated with ABC solution (VectorLaboratries) for 30 min at RT. Slides were stained with DAB solution until a brown staining is visable and with Haemalaun for a few minutes. The picture was acquired using microscopy (courtesy of J.Hess, University Hospital Heidelberg).

IHC analysis of mouse spinal cord using anti-glial fibrillary acidic protein antibody (Cat. No. GP52). IHC was performed on formalin fixed frozen sections (12 um). Heat induced antigen retrieval was performed in citrate buffer pH 6.0 for 1 h at 65°C. After preparation the tissue was blocked with 5% donkey serum in fish skin buffer for 1 h at RT. The primary antibody anti-GFAP (Cat. No. GP52) was diluted in fish skin buffer (1:500) and incubated at RT over-night. The secondary antibody donkey anti-guinea pig Alexa488 was also diluted in fish skin buffer (1:1,000) and incubated for 1 h at RT. The picture was acquired using fluorescent microscopy. Courtesy of M.Sc. Julia Preishuber-Pfluegl and Dr. Andrea Zurl, Universitaetsklinik fuer Augenheilkunde und Optometrie der PMU, Landeskrankenhaus Salzburg

IHC analysis of mouse optic nerve using anti-glial fibrillary acidic protein antibody (Cat. No. GP52). IHC was performed on formalin fixed frozen sections (12 um). Heat induced antigen retrieval was performed in citrate buffer pH 6.0 for 1 h at 65°C. After preparation the tissue was blocked with 5% donkey serum in fish skin buffer for 1 h at RT. The primary antibody anti-GFAP (Cat. No. GP52) was diluted in fish skin buffer (1:500) and incubated at RT over-night. The secondary antibody donkey anti-guinea pig Alexa488 was also diluted in fish skin buffer (1:1,000) and incubated for 1 h at RT. The picture was acquired using fluorescent microscopy. Courtesy of M.Sc. Julia Preishuber-Pfluegl and Dr. Andrea Zurl, Universitaetsklinik fuer Augenheilkunde und Optometrie der PMU, Landeskrankenhaus Salzburg

References

Publication	Species	Application
Kniewallner, K. M., de Sousa, D. M. B., Unger, M. S., Mrowetz, H. & Aigner, L. Platelets in Amyloidogenic Mice Are Activated and Invade the Brain. Front. Neurosci. 14, 129 (2020).	mouse	IHC-IF
Kinboshi, M. et al. Down-Regulation of Astrocytic Kir4.1 Channels during the Audiogenic Epileptogenesis in Leucine-Rich Glioma-Inactivated 1 (Lgi1) Mutant Rats. Int.J.Mol.Sci. 20, (2019)	rat	IHC-IF (paraffin)
O'Sullivan, A. et al. Dimethylsulfoxide Inhibits Oligodendrocyte Fate Choice of Adult Neural Stem and Progenitor Cells. Front.Neurosci. 13, 1242 (2019)	rat	ICC-IF
Romanelli, P. et al. Extracellular Vesicles Can Deliver Anti-inflammatory and Anti-scarring Activities of Mesenchymal Stromal Cells After Spinal Cord Injury. Front.Neurol. 10, 1225 (2019)	rat	IHC-IF (frozen)
Wächter, C., Eiden, L. E., Naumann, N., Depboylu, C. & Weihe, E. Loss of cerebellar neurons in the progression of lentiviral disease: Effects of CNS-permeant antiretroviral therapy. J. Neuroinflammation 13, 272 (2016).	monkey	IHC-IF