

Product datasheet

anti-AAV VP1/VP2 mouse monoclonal, A69, lyophilized, purified

Short overview

Cat. No. 61057 **Quantity** 50 μg

Concentration 50 μg/ml after reconstitution with 1 ml dist. water

Product description

HostMouseAntibody TypeMonoclonalIsotypeIgG1CloneA69

Immunogen AAV2 capsids

Formulation Lyophilized; reconstitute in 1 ml dist. water (final solution contains 0.09 % sodium azide, 0.5%

BSA in PBS buffer, pH 7.4)

Conjugate Unconjugated

Purification Affinity chromatography

Storage before 2-8°C until indicated expiry date

reconstitution

Storage after Up to 3 months at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles

reconstitution

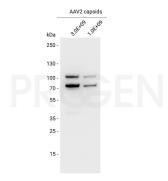
Intended useResearch use onlyApplicationICC/IF, IP, WBReactivityAAV2, AAVDJ

Applications

Immunocytochemistry (ICC)Assay dependentImmunoprecipitation (IP)Assay dependentWestern Blot (WB)1:500 (0.1 μg/ml)

Background

A69 reacts with VP1 and VP2 of adeno-associated virus 2 (AAV2) which are highly enriched in the nucleus. Epitope mapping experiments (Wobus et al. 2000) identified aa169 to aa184 of VP2 and (with reduced intensity) aa123 to aa136 of VP1 capsid proteins as the specific binding region.


Wobus, C. E. et al. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J. Virol. 74, 928193 (2000).

Product images


A69 epitopes in AAV serotypes

```
{\tt GKKRPVE} {\tt QSPQ-EPDSSSGIGKTGQQPAKKR} {\tt LNFGQTGD} {\tt SESV} {\tt PDPQPLGE}
AAV1
AAV2
           GKKRPVEHSPV-EPDSSSGTGKAGQQPARKRLNFGQTGDADSVPDPQPLGQ
AAV3B
           GKKRPVDQSPQ-EPDSSSGVGKSGKQPARKR<mark>LNFGQTGD</mark>SE<mark>SV</mark>PDPQPLGE
AAV4
           GKKRPLIESPQ-QPDSSTGIGKKGKQPAKKKLVF---EDETGAGDGPPEGS
AAV5
           TGKRIDDHFPK----RKKARTEEDSKPSTS-
                                                 --SDAEAGPSGSOOLOI
           GKKRPVEQSPQ-EPDSSSGIGKTGQQPAKKRLNFGQTGDSESVPDPQPLGE
AAV6
AAV7
           AKKRPVEPSPQRSPDSSTGIGKKGQQPARKRLNFGQTGDSESVPDPQPLGE
           GKKRPVEPSPQRSPDSSTGIGKKGQQPARKRLNFGQTGDSESVPDPQPLGE
AAV8
           GKKRPVEQSPQ-EPDSSAGIGKSGAQPAKKRLNFGQTGDTESVPDPQPIGE
AAV9
AAVrh10
           GKKRPVEPSPORSPDSSTGIGKKGOOPAKKRLNFGOTGESESVPDPOPIGE
AAVhu.37
           GKKRPVEPSPORSPDSSTGIGKKGOOPAKKRLNFGOTGDSESVPDPOPIGE
AAVrh74
           GKKRPVEPSPQRSPDSSTGIGKKGQQPAKKRLNFGQTGDSESVPDPQPIGE
```

Alignment of A69 epitopes in different AAV serotypes.

Western blot analysis of AAV2 capsids with anti-AAV VP1/VP2 antibody. Western blot analysis was performed on either 3.0E+09 or 1.0E+09 AAV2 capsids. The PVDF membrane was blocked with 5% dry milk in PBST for 1 h at RT. The primary antibody anti-AAV VP1/VP2 mouse monoclonal, A69 (Cat. No. 61057) was diluted in blocking buffer (antibody concentration 0.1 µg/ml) and incubated for 1 h at RT. The secondary antibody goat anti-mouse IgG polyclonal, HRP conjugate was also diluted in blocking buffer (antibody concentration 0.2 µg/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

Western blot analysis of denatured AAV1-AAV9, AAVrh10, AAVDJ capsids (1E+09 capsids, denatured at 95°C for 10 min in sample buffer). The PVDF membrane was blocked with 5% dry milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-AAV VP1/VP2 mouse monoclonal, A69 (Cat. No. 61057) was diluted in blocking buffer (antibody concentration 100 ng/ml) and incubated for 1 h at RT. The secondary antibody goat anti-mouse IgG HRP was also diluted in blocking buffer (antibody concentration 200 ng/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using Pierce ECL Western Blotting Substrate.

References

Publication	Species	Application
Hamann, M. V. et al. Improved targeting of human CD4+ T	AAV2	WB
cells by nanobody-modified AAV2 gene therapy vectors. PLoS		
One 16, (2021).		
Wobus, C. E. et al. Monoclonal antibodies against the	AAV2	epitope mapping
adeno-associated virus type 2 (AAV-2) capsid: epitope		
mapping and identification of capsid domains involved in		
AAV-2-cell interaction and neutralization of AAV-2 infection. J.		
<u>Virol. 74, 9281–93 (20</u>		
Wistuba, A. et al. Subcellular Compartmentalization of	AAV2	WB,IP,ICC-IF
Adeno-Associated Virus Type 2 Assembly. J. Virol. 71,		
<u>1341–1352 (1997)</u> .		
Wistuba, A., Weger, S., Kern, A., Rgen, J. & Kleinschmidt, A.	AAV2	WB,IP
Intermediates of Adeno-Associated Virus Type 2 Assembly:		
Identification of Soluble Complexes Containing Rep and Cap		
Proteins. J. Virol. 69, 5311–5319 (1995).		