

Product datasheet

anti-Vimentin (N-terminus) guinea pig polyclonal, serum

Short overview

 Cat. No.
 GP59

 Quantity
 100 μl

Product description

Host Guinea pig
Antibody Type Polyclonal

Immunogen Synthetic N-terminus of human vimentin (aa 2 17)

Formulation Contains 0.09% sodium azide **UniprotID** P08670 (Human), P20152 (Mouse)

Synomym Vimentin, VIM

Note Centrifuge prior to opening

ConjugateUnconjugatedPurificationStabilized antiserum

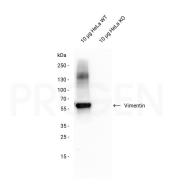
Short term at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles

Intended use Research use only

Application IHC, WB **Reactivity** Human, Mouse

Applications

Immunohistochemistry (IHC) - frozen 1:100


Immunohistochemistry (IHC) - paraffin 1:50 (microwave treatment recommended)

Western Blot (WB) 1:1,000-1:3,000

Background

Specific detection of vimentin (Mr 57,000 polypeptide) in cells and tissues of mesenchymal origin (e.g. fibroblasts, endothelial cells, smooth muscle cells). Tumors specifically detected: Sarcoma (including myosarcoma), lymphoma, melanoma

Product images

Western blot analysis of HeLa lysate with anti-Vimentin antibody. Western blot analysis was performed on 10 μ g wild type (WT) and 10 μ g Vimentin knockout (KO) HeLa lysate. The PVDF membrane was blocked with 5% milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-Vimentin (N-terminus) guinea pig polyclonal (Cat. No. GP59) was diluted in blocking buffer (1:1,000) and incubated for 1 h at RT. The secondary antibody anti-guinea pig, HRP conjugate was also diluted in blocking buffer (antibody concentration 0.2 μ g/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

References

Publication	Species	Application
Kanda, M. et al. Leukemia Inhibitory Factor Enhances	mouse	IHC (frozen)
Endogenous Cardiomyocyte Regeneration after Myocardial		
Infarction. PLoS One 11, (2016).		