

Product datasheet

anti-AAV VP1 mouse monoclonal, A1, lyophilized, purified

Short overview

Cat. No. 61056 **Quantity** 50 μg

Concentration 50 μg/ml after reconstitution with 1 ml sterile PBS

Product description

HostMouseAntibody TypeMonoclonalIsotypeIgG2aCloneA1

Immunogen AAV2 capsids

Formulation Lyophilized; reconstitute in 1 ml sterile PBS

Conjugate Unconjugated

Purification Affinity chromatography

Storage before 2-8°C until indicated expiry date

reconstitution

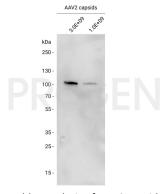
Storage after Up to 3 months at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles

reconstitution

Intended useResearch use onlyApplicationELISA, ICC/IF, IP, WB

Reactivity AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAVDJ

Applications

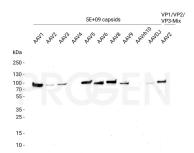

ELISAAssay dependentImmunocytochemistry (ICC)Assay dependentImmunoprecipitation (IP)Assay dependentWestern Blot (WB)1:500 (0.1 μg/ml)

Background

A1 reacts with VP1 of adeno-associated virus 1-9 and DJ (AAV1-9, DJ). In immunoprecipitation, an occasional reaction with a non-AAV-derived protein is found. Epitope mapping experiments (Wobus et al. 2000) identified aa123 to aa131 of VP1 capsid protein as the specific binding region.

Wobus, C. E. et al. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J. Virol. 74, 928193 (2000).

Product images



Western blot analysis of AAV2 capsids with anti-AAV VP1 antibody. Western blot analysis was performed on either 3.0E+09 or 1.0E+09 AAV2 capsids. The PVDF membrane was blocked with 5% dry milk in PBST for 1 h at RT. The primary antibody anti-AAV VP1, mouse monoclonal, A1 was diluted in blocking buffer (antibody concentration $0.1 \,\mu\text{g/ml}$) and incubated for 1 h at RT. The secondary antibody goat anti-mouse IgG polyclonal, HRP conjugate was also diluted in blocking buffer (antibody concentration $0.2 \,\mu\text{g/ml}$) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

A1 epitopes in AAV serotypes

AAV1	AKKRVLEPLGLVEEGAKTAPGKKRPVEQSPQ
AAV2	AKKRVLEPLGLVEEPVKTAPGKKRPVEHSPV
AAV3B	AKKRILEPLGLVEEAAKTAPGKKRPVDQSPQ
AAV4	AKKRVLEPLGLVEQAGETAPGKKRPLIESPQ
AAV5	AKKRVLEPFGLVEEGAKTAPTGKRIDDHFPK
AAV6	AKKRVLEPFGLVEEGAKTAPGKKRPVEQSPQ
AAV7	AKKRVLEPLGLVEEGAKTAPAKKRPVEPSPQ
AAV8	AKKRVLEPLGLVEEGAKTAPGKKRPVEPSPQ
AAV9	AKKRLLEPLGLVEEAAKTAPGKKRPVEQSPQ
AAVrh10	AKKRVLEPLGLVEEAAKTAPGKKRPVEPSPQ
AAVhu.37	AKKRVLEPLGLVEEAAKTAPGKKRPVEPSPQ
AAVrh74	AKKRVLEPLGLVESPVKTAPGKKRPVEPSPO

Alignment of A1 epitopes in different AAV serotypes.

Western blot analysis of denatured AAV1-AAV9, AAVrh10, AAVDJ capsids (5E+09 capsids, denatured at 95°C for 10 min in sample buffer) and recombinant AAV2 VP1/VP2/VP3-Mix (50 ng, Cat. No. 72001). The PVDF membrane was blocked with 5% dry milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-AAV VP1, mouse monoclonal, A1 was diluted in blocking buffer (antibody concentration 100 ng/ml) and incubated for 1 h at RT. The secondary antibody goat anti-mouse IgG HRP was also diluted in blocking buffer (antibody concentration 200 ng/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using Pierce ECL Western Blotting Substrate.

References

Publication	Species	Application
Mietzsch, M. et al. OneBac: Platform for Scalable and	AAV1,AAV2,AAV3,AAV4,AAV	WB
High-Titer Production of Adeno-Associated Virus Serotype	5,AAV6,AAV7,AAV8,AAV9,AA	
1â€"12 Vectors for Gene Therapy. Hum. Gene Ther. 25,	Vrh10,AAV11,AAV12	
<u>212–222 (2014).</u>		
Grimm, D., Kay, M. A. & Kleinschmidt, J. A. Helper virus-free,	AAV2	WB
optically controllable, and two-plasmid-based production of		
adeno-associated virus vectors of serotypes 1 to 6. Mol. Ther.		
<u>7, 839–850 (2003).</u>		
Wobus, C. E. et al. Monoclonal antibodies against the	AAV2	epitope mapping
adeno-associated virus type 2 (AAV-2) capsid: epitope		
mapping and identification of capsid domains involved in		
AAV-2-cell interaction and neutralization of AAV-2 infection. J.		
<u>Virol. 74, 9281–93 (20</u>		
Wistuba, A. et al. Subcellular Compartmentalization of	AAV2	WB,ICC-IF
Adeno-Associated Virus Type 2 Assembly. J. Virol. 71,		
<u>1341–1352 (1997).</u>		