Product datasheet

anti-AAV VP1/VP2/VP3 mouse monoclonal, B1, liquid, purified

Short overview

Cat. No.	690058
Quantity	1 ml
Concentration	$50 \mu \mathrm{~g} / \mathrm{ml}$

Product description

Host	Mouse
Antibody Type	Monoclonal
Isotype	lgG1
Clone	B1
Immunogen	AAV2 capsids
Formulation	PBS, pH 7.4 with 0.09% sodium azide and 0.5% BSA
Conjugate	Unconjugated
Purification	Affinity chromatography
Storage	Up to 1 month: $2-8^{\circ} \mathrm{C}$; long term storage in aliquots at $-20^{\circ} \mathrm{C}$; avoid freeze/thaw cycles
Intended use	Research use only
Application	Affinity chromatography, Dot blot, ICC/IF, IP, WB
Reactivity	AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAVDJ, AAVrh10

Applications

Affinity Chromatography

Dot Blot
Immunocytochemistry (ICC)
Immunoprecipitation (IP)
Western Blot (WB)

Assay dependent
1:500 ($0.1 \mu \mathrm{~g} / \mathrm{ml}$; denaturing conditions)
Assay dependent
Assay dependent (precipitation of mainly free VP proteins)
1:250-1:500 (0.1-0.2 $\mu \mathrm{g} / \mathrm{ml}$)

Background

The B1 antibody reacts with free VP1, VP2 and VP3 of adeno-associated virus (AAV) and at a reduced degree with assembled viral particles. VP1 and VP2 are highly enriched in the nucleus, while non-assembled VP3 is evenly distributed in the nucleus and the cytoplasm. Epitope mapping experiments (Wobus et al., 2000) identified aa726 to aa733 (C-terminus; common to all 3 VP proteins) as the specific binding region. The antibody is also useful for characterization of different stages of infection.Wobus, C. E. et al. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J. Virol. 74, 9281-93 (2000).

Product images

B1 epitopes in AAV serotypes

AAV1 KSANVDFTVDNNGLYTEPRPIGTRYLTRPL AAV2 KSVNVDFTVDTNGVYSEPRPIGTRYLTRNL AAV-DJ KSTSVDFAVNTEGVYSEPRPIGTRYLTRNL AAV3B KSVNVDFTVDTNGVYSEPRPIGTRYLTRNL AAV4 QQNSLLWAPDAAGKYTEPRAIGTRYLTHHL AAV5 DPQFVDFAPDSTGEYRTTRPIGTRYLTRPL AAV6 KSANVDFTVDNNGLYTEPRPIGTRYLTRPL AAV7 KQTGVDFAVDSQGVYSEPRPIGTRYLTRNL AAV8 KSTSVDFAVNTEGVYSEPRPIGTRYLTRNL AAV9 KSNNVEFAVNTEGVYSEPRPIGTRYLTRNL AAVrh10 KSTNVDFAVNTEGTYSEPRPIGTRYLTRNL AAVhu. 37 KSTNVDFAVNTEGTYSEPRPIGTRYLTRNL AAVrh74 KSTNVDFAVNTEGTYSEPRPIGTRYLTRNL

Alignment of B1 epitopes in different AAV serotypes.

Dot blot analysis of denatured AAV2 VP2 capsids with B1 antibody (Cat. No. 690058) and ECL detection.Dot blot analysis was performed on $1 \mathrm{E}+10,5 \mathrm{E}+09$ or $1 \mathrm{E}+09$ denatured AAV2 capsids. The capsids were denatured for 10 min at $95^{\circ} \mathrm{C}$. The nitrocellulose membrane was blocked with 5% dry milk in PBST (PBS + 0.1\% Tween 20) for 1 h at RT. The primary antibody anti-AAV VP1/VP2/VP3, B1 (Cat. No. 690058) was diluted in blocking buffer (antibody concentration $100 \mathrm{ng} / \mathrm{ml}$) and incubated for 1 h at RT. The secondary antibody goat anti-mouse IgG HRP was also diluted in blocking buffer (antibody concentration $200 \mathrm{ng} / \mathrm{ml}$) and incubated for 1 h at RT . The bands were visualized by chemiluminescent detection using PierceTM ECL Plus Western Blotting Substrate.

Western blot analysis of recombinant AAV2 capsid proteins (Cat. No. 640823, 640824, 640825) with B1 antibody (Cat. No. 690058). Western blot analysis was performed on the precise molar ratio of 1:1:10 (VP1:VP2:VP3) either in separate lanes or combined in one lane The PVDF membranes were blocked with 5% dry milk in PBST (PBS + 0.1\% Tween 20) for 1 h at RT. The primary antibody anti-AAV VP1/VP2/VP3 mouse monoclonal, B1 (Cat. No. 690058) was diluted in blocking buffer (antibody concentration $0.5 \mu \mathrm{~g} / \mathrm{ml}$) and incubated for 1 h at RT. The secondary antibody goat anti-mouse IgG HRP was also diluted in blocking buffer (antibody concentration $0.2 \mu \mathrm{~g} / \mathrm{ml}$) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

References

Publication	Species	Application
Zhang, R. et al. Divergent engagements between adeno-associated viruses with their cellular receptor AAVR. Nat.Commun. 10, 3760 (2019)	AAV	WB
Meng, Y. et al. Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system. Mol Ther Methods Clin Dev. 21. 28-41(2021).	AAV9	
FranÃ§ois, A. et al. Accurate Titration of Infectious AAV Particles Requires Measurement of Biologically Active Vector Genomes and Suitable Controls. Mol. Ther. - Methods Clin.	AAV8	
Dev. 10, 223âe"236 (2018).	WB	
Jin, L.-F. et al. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of	AAV5	
Adeno-Associated Virus Delivery. Int. J. Mol. Sci 14, 9737â€"9750 (2013).	WB	
Galibert, L. et al. Functional roles of the membrane-associated AAV protein MAAP. Sci. Rep. 11, (2021).	AAV2	

