

Product datasheet

anti-Vimentin mouse monoclonal, XL-VIM-14.13, supernatant

Short overview

 Cat. No.
 65189

 Quantity
 5 ml

Product description

Host Mouse
Antibody Type Monoclonal
Isotype IgG1

Clone XL-VIM-14.13

Immunogen Vimentin from cytoskeletal fraction of XLKE cells (cul-tured Xenopus laevis kidney epithelial cells)

Formulation Contains 0.09% sodium azide

Conjugate Unconjugated

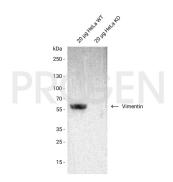
Purification Hybridoma cell culture supernatant

Storage Short term at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles

Intended useResearch use onlyApplicationIEM, IHC, WBReactivityCarp, Human, Trout

No reactivity Bovine

Applications


Cell-based AssayAssay dependentImmunohistochemistry (IHC) - frozenReady-to-useWestern Blot (WB)1:10-1:20

Background

The anti-Vimentin antibody detects an epitope within the rod domain of xenopus and trout vimentin. Vimentin of amphibia and fish, predominantly found in glial and white blood cells.

Polypeptide reacting: MW 53,325 (pl 4.95) intermediate filament protein (vimentin) of Xenopus laevis (epitope presumably located between amino acids 79 and 88 within rod domain).

Product images

Western blot analysis of HeLa lysate with anti-Vimentin antibody. Western blot analysis was performed on 20 µg wild type (WT) and 20 µg Vimentin knockout (KO) HeLa lysate. The PVDF membrane was blocked with 5% milk in PBST (PBS + 0.1% Tween 20) for 1 h at RT. The primary antibody anti-Vimentin mouse monoclonal, XL-VIM-14.13 (Cat. No. 65189) was diluted in blocking buffer (1:10) and incubated for 1 h at RT. The secondary antibody anti-mouse IgG, HRP conjugate was also diluted in blocking buffer (antibody concentration 200 ng/ml) and incubated for 1 h at RT. The bands were visualized by chemiluminescent detection using PierceTM ECL Western Blotting Substrate.

References

Publication	Species	Application
Zirwes, R. F., Kouzmenko, A. P., Peters, J. M., Franke, W. W.	xenopus	WB,ICC-IF,IEM
& Schmidt-Zachmann, M. S. Topogenesis of a nucleolar		
protein: determination of molecular segments directing		
nucleolar association. Mol. Biol. Cell 8, 231-48 (1997).		
Herrmann, H., Munick, M. D., Brettel, M., Fouquet, B. & Markl,	trout	WB,IHC (frozen)
J. Vimentin in a cold-water fish, the rainbow trout: highly		
conserved primary structure but unique assembly properties.		
J. Cell Sci. 109 (Pt 3, 569-78 (1996).		
Herrmann, H., Hofmann, I. & Franke, W. W. Identification of a	xenopus	ICC-IF
nonapeptide motif in the vimentin head domain involved in		
intermediate filament assembly. J. Mol. Biol. 223, 637-50		
<u>(1992).</u>		